
of the order t** -- t, >> To the process s(t) can be treated as rapidly varying in composition 
with s**(tlt,) , and within small error limits the Stochastic interdependence of the values of 
these processes at coinciding times can be neglected. These assumptions are better satisfied 
the stronger the inequality (2.7). Under the stated assumptions the characteristic X(tlt ,) 
obeys the approximate expression 

0 0 

Here v:(s, ~; t) is the joint density function for the process s(t) and its first derivative 
$(t) at coinciding times, and pa(s**; tlt,) is the density function for the process s**(t]t,) 
at the same times. The density function p,(s, ~; t) is specified as part of the description 
of the loading process, whereas the distribution of the values of the process s**(tlt,) , ac- 
cording to (4.2), is expressed in terms of the distribution function of the values of the pro- 
cess l(tlt,). 
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CONTINUATION WITH RESPECT TO A PARAMETER IN NONLINEAR 

ELASTICITY THEORY PROBLEMS 

E. I. Grigolyuk and V. I. Shalashilin UDC 539.3 

i. The equations describing the nonlinear static deformation of elastic systems gener- 
ally contain a parameter, usually the load. We consider algebraic and transcendental equa- 
tions. The generalization to functional and operator equations presents no difficulties in 
principle. 

Let us consider a system of nonlinear equations for the vector x = {xl, ..., x m} con- 
taining a parameter X: 

F ~ ,  ~) = o ,  (1.  l) 

where F = {F1(x, A), ..., Fm(x , A)} is a vector function which is nonlinear with respect to 
x and X, and is assumed continuous and differentiable with respect to x and I a sufficient 
number of times. 

Suppose for X~ [Ao, A n] Eq. (1.1) has the solution x(X), and that for X = Xo the solu- 
tion X, = X(X.) is known, i.e., 

f(~o), ~o) = 0 (l. 2) 

We introduce an (m + l)-dimensional vector space Em+,: {x, X}. In this respect the 
point corresponding to the solution of (i.i) describes a continuous curve K which passes 
through the points x(o), X(o), and X(n), X(n ). The idea of the method of continuation with 
respect to a parameter consists in constructing a sequence of solutions X(k ) = X(Xk) (k = 
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i, ..., n) based on the known solution x ( ~ )  for motion along curve K. Two forms of the 
method of continuation with respect to a parameter are known: continuous continuation [i] 
and discrete continuation [2]. 

2. The process of continuous continuation is based on the fact that the differentiation 
of Eqs. (i.i) with respect to the parameter I leads to a system of linear equations for dxl/ 
d%: 

dx 8F { OFi] 
. ] ' - f f + - ~ f . = 0 ,  or= F~,j= o~j/ (~, / =  L . . . ,  m). (2.1) 

If for A ~ [Ao, A n ] the Jacobian det (J) # 0, the process of constructing the solution of 
system (i.i) is reduced to the integration of the Cauchy problem with respect to the param- 
eter ~: 

dx __j-1 OF 
d'-'~ = 0-'~' x (%o) = X(o). ( 2 . 2 )  

Known explicit and implicit schemes can be used for the integration. However, all these 
schemes become useless near points where det (J) = 0, i.e., near the singular points of the 
curve K. We consider only the limit points. Ordinarily these difficulties are avoidedby 
changing the parameter [i], using instead of (2.1) an analogous system which is obtained 
from (i.i) by differentiating with respect to one of the components x t of the vector x, and 
setting A = A(xt). This raises the question of choosing the optimum continuation parameter 
[3, 4]. 

We present a different approach. In Em+,, we denote Xm+z by k. Then Eqs. (i.I) take 
the form 

F i ~ )  = 0 (i = ix  . . .~ m;  x ~ Era+l ) .  ( 2 . 3 )  

(2.1) in the form of a system of m linear homogeneous equations for the m + I We write Eqs. 
unknowns dxj: 

m+1 

F~.j dxj = 0 (~ = i ,  . . . ,  m). (2.4) 
j=1 

The matrix of this system J+ = {J, F, A}, which is formed by adding the column vector F,% to 
the right of J, has the important property that at both regular and limit points the rank of 
(J+) is m. The vector dx = {dxz, ..., dxm, dxm+z = dA} by its very meaning is tangent to the 
curve K in Em+~, and belongs to the one-dimenslonal subspace of the solutions of system (2.4). 
Henceforth, by dx we shall understand a unit vector of this subspace. Being a solution of 
system (2.4), it is orthogonal to the rows of the matrix J+, and can be obtainedas an orthog- 
onal complement of the orthonormal basis of the rows of J+ constructed by the Gr~Schmidt 
process. Since the rank of (J+) is m, such a basis exists at both regular and limit points. 
This method of solving systems (2.1), (2.4) is commonly called the orthogonallzation method 
[5]. In the number of necessary operations and stability it is only slightly inferior to 
Gauss' method. However, when it is applied to continuation with respect to a parameter there 
is a considerable advantage of system (2.4) over (2.2) at each step, since continuation along 
the direction of dx is optimum [4]. The question of the optimum continuation parameter is 
solved in a natural way. 

System (2.4) together with the initial condition x(Ao) = x(o) is an implicit formulation 
of the Cauchy problem for dx, and can be integrated by the same explicit and implicit schemes 
as problem (2.2). 

3. The method of discrete continuation with respect to a parameter in the form proposed 
in [2] consists essentially in finding the solutions X(k) = x(% k) of system (i.i) by Newton's 
method, taking the solution X(k-,) = X(Ak-,) as the initial approximation. The corresponding 
iterative process has the form 

x !~  " ") ~ 0 - A x ~ "  " "~ t~, = x(k_~,  ] ix(k), + F (x(h), ~ )  = O, 
(3.1) 

X ( i + l ) _ _  ~(1) -- (i+1) (k) --A(k)+nx~n) , it0,1,... 

Figure 1 illustrates this process geometrically for an equation with one unknown F(x, %) = O. 
The solutions X(k ) sought lie on curve K along which the surface F(x, A) intersects the x, % 
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plane. In the neighborhood of limit point P the transition from I k to lk .%. removes process 
(3.1) from the domain where a solution exists, and it ceases to converge. In other words, the 
difficulty arises as a result of seeking the solution of (1.1) in the m-dlmensional plane X = 
%k+~ ~ Em+x, which does not intersect K. It would be optimum to seek the solution X(k ) in the 
m-dimensional surface M m ~ Em+x which is orthogonal to K for x ~ X(k), but M m is unknown until 
X(k) is found. However, it is possible to seek the solution in a surface M* m near M m. Let 
us consider some methods for prescribing M* m. To do this we use the equations in the form 
(2.3), regarding the parameter X on the same basis as the remaining unknowns. 

Let t be the size of the step with which we attempt to move along K. Then the plane 
M* m passing through the point (X(k_x) + tdx(k-x))EEm+x so that it is orthogonal to dx(k-x) 
will be near M m for small t. It is determined by the vector equation dx(k-x).(x- X(k-x) -- 
tdx(k-x)) = 0. Here the dot �9 denotes scalar multiplication. In this way the determination 
of the solution X(k) following x k , is reduced to finding the solution of (2.3) in M'm, �9 (-) 
i.e., to the simultaneous solution of the equations 

Fq(x) = 0 (g -- I, .... m; x ~ Era+l); (3.2) 

d x ( a _ x ) . x  - -  (dx  ( a _ l ) . x ( ~ -  0 + t)  = 0.  ( 3 . 3 )  

Newton's iterative process for solving system (3.2) with condition (3.3) is illustrated in 
Fig. 2, and has the form 

x(O) (k) -- x(~-l) -~ tdx(k-,)~ 

J +  kXr  -'C '~ t (m] = ,  
(i+~) (1) 

[dXck_l).hxch ) .-~ dX(h_l).(X~k)- Xfh_l) ) - -  t =  O; 
A_(i+i) 

A(h ) ---~ . . .  

(3.4) 

(3.5) 

(3.6) 

We c a n  u n d e r s t a n d  t h e  s e c o n d  o f  E q s .  ( 3 . 5 )  a s  t h e  r e q u i r e m e n t  f o r  t h e  c o r r e c t i o n  v e c t o r s  

A ( i+, . )  �9 ( i +x )  = _ x to be orthogona! to dx , and write it in the form dX(k x) AX(k ) O. 
(k) (k-x) c i ~  r _ 

If we introduce the vector dXik i = ,fx (i)(k) -- X(k x) )/t' thenby analogy the second of Eqs. 
(3.5) can be replaced by 

d~(i )  Av(~+1) " (k ) ' ~ ' - ( k )  = O. (3.7) 

The geometry of the process with such a condition is shown in Fig. 3 by the dashed lines. 
is corrected at each step. The process shown in Fig. 3 by solid lines seems still more 

effective. It is realized by the following algorithm: 

- (o) ~(o) ,.TJo). (3.8) 
a x ( ~ )  = dx(h_~),  A(Io = x(h-x)  ~ *~,~(h), 

, , + x , * ( h ) l ' ~ * ( h )  -~- F(x~i ) ) )  = O, (3.9) 
.7~(i) Av(i+l) n. 
t~,,,.(h ) �9 ~.x(h ) = u, 

1 
d . ( i + l )  d y ~  d-  A_( i+ i )  - ( i+l)  zu(i+l)/(dU(i+l) z u ( i + i ) ~ ; .  (3. i0) 

(3. ll) (k) ----x(k-1)~c~a~(k) , i----O,l, ... 

This algorithm ensures the size of the step t along a chord of curve K with the specified 
accuracy. 
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All the algorithms presented above permit replacing the vector dX(k_~ ) by its approxi- 

X %~1/2 mate value dX~k_~ ) = (X(k_~) -- X(k_,))/[(X(k_: ) -- X(k_a )) (X(k-*)(T',z) (k-a))J ,/o ~, and the 

usual modification of Newton's method with the replacement of J+(X(k )) by J+(X(k )) 

We note that an approach similar to the geometric treatment wlth process (3.4)-(3.6) was 
discussed in [4]. but the supplementary equation proposed there is cumbersome and requires an 
appreciable number of additional calculations, as noted by the authors. 

The surface ~ may not be a plane. For example, if we seek a solution for (2.3) on a 
sphere of radius t with its center at X(k+,), we have to solve simultaneously the equations 

F ~ )  = 0 (q = 1 . . . . .  ~ ) ,  ~ - x ~ - t ) ) .  (x  - x ( ~ - , ) )  - t ~ = O. 

The algorithm of Newton's method takes the form (3.4)-(3.6) with the replacement of the sup- 
plementary equation in (3.5) by 

d_(O A~+zj_ t [z_(O =_(i) I) 0. 

The solution of Eqs. (3.5) and (3.9) by the orthogonallzatlon method eliminates computational 
difficulties at both regular and limit points. 

In conclusion, we note that the continuous and discrete continuation processes formulated 
here have a considerable algorithmic generality, which makes it convenient to combine continu- 
ous and discrete continuation, using the latter of necessity for periodic refinement of the 
solution. 

. 

2. 

3. 

. 

5. 
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